Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning
نویسندگان
چکیده
منابع مشابه
Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning
In this work we present new kernels for the generation and application of block-Jacobi preconditioners that accelerate the iterative solution of sparse linear systems on graphics processing units (GPUs). Our approach departs from the conventional LU factorization and decomposes the diagonal blocks of the matrix using the Gauss-Huard method. When enhanced with column pivoting, this method is as ...
متن کاملThe Gauss-Huard algorithm and LU factorization
In this paper we analyze the Gauss-Huard algorithm. From a description of the algorithm in terms of matrix-vector operations we reveal a close relation between the Gauss-Huard algorithm and an LU factorization as constructed in an ikj variant.
متن کاملStability of Gauss-Huard Elimination for Solving Linear Systems
This paper considers elimination methods to solve dense linear systems, in particular a variant due to Huard of Gaussian elimination [13]. This variant reduces the system to an equivalent diagonal system just as GaussJordan elimination, but does not require more floating-point operations than Gaussian elimination. Huard's method may be advantageous for use in computers with hierarchical memory,...
متن کاملPreconditioning in the Parallel Block - Jacobi Svd Algorithm ∗
One way, how to speed up the computation of the singular value decomposition of a given matrix A ∈ Cm×n, m ≥ n, by the parallel two-sided block-Jacobi method, consists of applying some pre-processing steps that would concentrate the Frobenius norm near the diagonal. Such a concentration should hopefully lead to fewer outer parallel iteration steps needed for the convergence of the entire algori...
متن کاملOn Gauss-Jacobi sums
In this paper, we introduce a kind of character sum which simultaneously generalizes the classical Gauss and Jacobi sums, and show that this “Gauss-Jacobi sum” also specializes to the Kloosterman sum in a particular case. Using the connection to the Kloosterman sums, we obtain in some special cases the upper bound (the “Weil bound”) of the absolute values of the Gauss-Jacobi sums. We also discu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2017
ISSN: 1877-0509
DOI: 10.1016/j.procs.2017.05.186