Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning

In this work we present new kernels for the generation and application of block-Jacobi preconditioners that accelerate the iterative solution of sparse linear systems on graphics processing units (GPUs). Our approach departs from the conventional LU factorization and decomposes the diagonal blocks of the matrix using the Gauss-Huard method. When enhanced with column pivoting, this method is as ...

متن کامل

The Gauss-Huard algorithm and LU factorization

In this paper we analyze the Gauss-Huard algorithm. From a description of the algorithm in terms of matrix-vector operations we reveal a close relation between the Gauss-Huard algorithm and an LU factorization as constructed in an ikj variant.

متن کامل

Stability of Gauss-Huard Elimination for Solving Linear Systems

This paper considers elimination methods to solve dense linear systems, in particular a variant due to Huard of Gaussian elimination [13]. This variant reduces the system to an equivalent diagonal system just as GaussJordan elimination, but does not require more floating-point operations than Gaussian elimination. Huard's method may be advantageous for use in computers with hierarchical memory,...

متن کامل

Preconditioning in the Parallel Block - Jacobi Svd Algorithm ∗

One way, how to speed up the computation of the singular value decomposition of a given matrix A ∈ Cm×n, m ≥ n, by the parallel two-sided block-Jacobi method, consists of applying some pre-processing steps that would concentrate the Frobenius norm near the diagonal. Such a concentration should hopefully lead to fewer outer parallel iteration steps needed for the convergence of the entire algori...

متن کامل

On Gauss-Jacobi sums

In this paper, we introduce a kind of character sum which simultaneously generalizes the classical Gauss and Jacobi sums, and show that this “Gauss-Jacobi sum” also specializes to the Kloosterman sum in a particular case. Using the connection to the Kloosterman sums, we obtain in some special cases the upper bound (the “Weil bound”) of the absolute values of the Gauss-Jacobi sums. We also discu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2017

ISSN: 1877-0509

DOI: 10.1016/j.procs.2017.05.186